Андрей Колпаков
Особенности применения драйверов MOSFET и IGBT
Введение
Силовые транзисторы IGBT и MOSFET стали основными элементами, применяемыми в мощных импульсных преобразователях. Их уникальные статические и динамические характеристики позволяют создавать устройства, способные отдать в нагрузку десятки и даже сотни киловатт при минимальных габаритах и КПД, превышающем 95 %.
Общим у IGBT и MOSFET является изолированный затвор, в результате чего эти элементы имеют схожие характеристики управления. Благодаря отрицательному температурному коэффициенту тока короткого замыкания появилась возможность создавать транзисторы, устойчивые к короткому замыканию. Сейчас транзисторы с нормированным временем перегрузки по току выпускаются практически всеми ведущими фирмами.
Отсутствие тока управления в статических режимах позволяет отказаться от схем управления на дискретных элементах и создать интегральные схемы управления — драйверы. В настоящее время ряд фирм, таких как International Rectifier, Hewlett-Packard, Motorola, выпускает широкую гамму устройств, управляющих одиночными транзисторами, полумостами и мостами — двух- и трехфазными. Кроме обеспечения тока затвора, они способны выполнять и ряд вспомогательных функций, таких как защита от перегрузки по току и короткого замыкания (Overcurrent Protection, Short Circuit Protection) и падения напряжения управления (Under Voltage LockOut — UVLO). Для ключевых элементов с управляющим затвором падение напряжения управления является опасным состоянием. При этом транзистор может перейти в линейный режим и выйти из строя из-за перегрева кристалла.
Пользователям бывает нелегко разобраться в широкой гамме микросхем, выпускаемых сейчас для использования в силовых схемах, несмотря на схожесть их основных характеристик. В данной статье рассматриваются особенности использования наиболее популярных драйверов, выпускаемых различными фирмами.
Режимы короткого замыкания
Основной вспомогательной функцией драйверов является защита от перегрузки по току. Для лучшего понимания работы схемы защиты необходимо проанализировать поведение силовых транзисторов в режиме короткого замыкания (или КЗ — привычная для разработчиков аббревиатура).
Причины возникновения токовых перегрузок разнообразны. Чаще всего это аварийные случаи, такие как пробой на корпус или замыкание нагрузки.
Перегрузка может быть вызвана и особенностями схемы, например переходным процессом или током обратного восстановления диода оппозитного плеча. Такие перегрузки должны быть устранены схемотехническими методами: применением цепей формирования траектории (снабберов), выбором резистора затвора, изоляцией цепей управления от силовых шин и др.
Включение транзистора при коротком замыкании в цепи нагрузки
Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1 а и 2. Все графики получены при анализе схем с помощью программы PSpice. Для анализа были использованы усовершенствованные модели транзисторов MOSFET фирмы International Rectifier и макромодели IGBT и драйверов, разработанные автором статьи.
Рис. 1. Режимы короткого замыкания
Максимальный ток в цепи коллектора транзистора ограничен напряжением на затворе и крутизной транзистора. Из-за наличия емкости в цепи питания внутреннее сопротивление источника питания не влияет на ток КЗ. В момент включения ток в транзисторе нарастает плавно из-за паразитной индуктивности LS в цепи коллектора (средний график на рис. 2). По этой же причине напряжение имеет провал (нижний график). После окончания переходного процесса к транзистору приложено полное напряжение питания, что приводит к рассеянию огромной мощности в кристалле. Режим КЗ необходимо прервать через некоторое время, необходимое для исключения ложного срабатывания. Это время обычно составляет 1–10 мкс. Естественно, что транзистор должен выдерживать перегрузку в течение этого времени.
Рис. 2
Короткое замыкание нагрузки у включенного транзистора
Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1 б и 3. Как видно из графиков, процессы в этом случае происходят несколько иначе. Ток, как и в предыдущем случае, ограниченный параметрами транзистора, нарастает со скоростью, определяемой паразитной индуктивностью Ls (средний график на рис. 3). Прежде чем ток достигнет установившегося значения, начинается рост напряжения Vce (нижний график). Напряжение на затворе возрастает за счет эффекта Миллера (верхний график). Соответственно возрастает и ток коллектора, который может превысить установившееся значение. В этом режиме кроме отключения транзистора необходимо предусмотреть и ограничение напряжения на затворе.
Рис. 3
Как было отмечено, установившееся значение тока КЗ определяется напряжением на затворе. Однако уменьшение этого напряжения приводит к повышению напряжения насыщения и, следовательно, к увеличению потерь проводимости. Устойчивость к КЗ тесно связана и с крутизной транзистора. Транзисторы IGBT с высоким коэффициентом усиления по току имеют низкое напряжение насыщения, но небольшое допустимое время перегрузки. Как правило, транзисторы, наиболее устойчивые к КЗ, имеют высокое напряжение насыщения и, следовательно, высокие потери.
Допустимый ток КЗ у IGBT гораздо выше, чем у биполярного транзистора. Обычно он равен 10-кратному номинальному току при допустимых напряжениях на затворе. Ведущие фирмы, такие как International Rectifier, Siemens, Fuji, выпускают транзисторы, выдерживающие без повреждения подобные перегрузки. Этот параметр оговаривается в справочных данных на транзисторы и называется Short Circuit Ration, а допустимое время перегрузки — tsc — Short Circuit Withstand Time.
Быстрая реакция схемы защиты вообще полезна для большинства применений. Использование таких схем в сочетании с высокоэкономичными IGBT повышают эффективность работы схемы без снижения надежности.
Применение драйверов для защиты от перегрузок
Рассмотрим методы отключения транзисторов в режиме перегрузки на примере драйверов производства фирм International Rectifier, Motorola и Hewlett-Packard, так как эти микросхемы позволяют реализовать функции защиты наиболее полно.
Драйвер верхнего плеча
Рис. 4. Структура драйвера IR2125
На рис. 4 приведена структурная схема, а на рис. 5 — типовая схема подключения драйвера IR2125 с использованием функции защиты от перегрузки. Для этой цели используется вывод 6 — CS. Напряжение срабатывания защиты — 230 мВ. Для измерения тока в эмиттере установлен резистор RSENSE, номинал которого и делителя R1, R4 определяют ток защиты.
Рис. 5. Схема включения IR2125
Как было указано выше, если при появлении перегрузки уменьшить напряжение на затворе, период распознавания аварийного режима может быть увеличен. Это необходимо для исключения ложных срабатываний. Данная функция реализована в микросхеме IR2125. Конденсатор С1, подключенный к выводу ERR, определяет время анализа состояния перегрузки. При С1 = 300 пФ время анализа составляет около 10 мкс (это время заряда конденсатора до напряжения 1,8 В — порогового напряжения компаратора схемы ERROR TIMING драйвера). На это время включается схема стабилизации тока коллектора, и напряжение на затворе снижается. Если состояние перегрузки не прекращается, то через 10 мкс транзистор отключается полностью.
Отключение защиты происходит при снятии входного сигнала, что позволяет пользователю организовать триггерную схему защиты. При ее использовании особое внимание следует уделить выбору времени повторного включения, которое должно быть больше тепловой постоянной времени кристалла силового транзистора. Тепловая постоянная времени может быть определена по графику теплового импеданса Zthjc для одиночных импульсов.
Описанный способ включения транзистора имеет свои недостатки. Резистор RSENSE должен быть достаточно мощным и иметь сверхмалую индуктивность. Серийно выпускаемые витые мощные резисторы обычно имеют недопустимо высокую паразитную индуктивность. Специально для прецизионного измерения импульсных токов фирма CADDOCK выпускает резисторы в корпусах ТО-220 и ТО-247. Кроме того, измерительный резистор создает дополнительные потери мощности, что снижает эффективность схемы. На рис. 6 приведена схема, свободная от указанных недостатков. В ней для анализа ситуации перегрузки используется зависимость напряжения насыщения от тока коллектора. Для MOSFET транзисторов эта зависимость практически линейна, так как сопротивление открытого канала мало зависит от тока стока. У IGBT график Von = f(Ic) нелинеен, однако точность его вполне достаточна для выбора напряжения, соответствующего току требуемому защиты.
Рис. 6
Для анализа состояния перегрузки по напряжению насыщения измерительный резистор не требуется. При подаче положительного управляющего сигнала на затвор на входе защиты драйвера SC появляется напряжение, определяемое суммой падения напряжения на открытом диоде VD2 и на открытом силовом транзисторе Q1 и делителем R1, R4, который задает ток срабатывания. Падение напряжения на диоде практически неизменно и составляет около 0,5 В. Напряжение открытого транзистора при выбранном токе короткого замыкания определяется из графика Von = f(Ic). Диод VD4, как и VD1, должен быть быстродействующим и высоковольтным.
Кроме защиты от перегрузки по току драйвер анализирует напряжение питания входной части VСС и выходного каскада VB, отключая транзистор при падении VB ниже 9 В, что необходимо для предотвращения линейного режима работы транзистора. Такая ситуация может возникнуть как при повреждении низковольтного источника питания, так и при неправильном выборе емкости С2. Величина последней должна вычисляться исходя из значений заряда затвора, тока затвора и частоты следования импульсов. Для расчета значения бутстрепной емкости Cb в документации фирмы International Rectifier рекомендуются следующие формулы:
Cb = 15*2*(2*Qg + Igbs/f + It)/(Vcc – Vf – Vls),
It = (Ion + Ioff)*tw.
где
- Ion и Ioff — токи включения и выключения затвора,
- tw = Qg/Ion — время коммутации,
- Qg — заряд затвора,
- f — частота следования импульсов,
- Vcc — напряжение питания,
- Vf — прямое падение напряжения на диоде зарядового насоса (VD1 на рис. 6),
- Vls — прямое падение напряжения на оппозитном диоде (VD3 на рис. 6),
- Igbs — ток затвора в статическом режиме.
При невозможности питания драйвера от бутстрепной емкости необходимо использовать «плавающий» источник питания.
Драйвер трехфазного моста
На рис. 7 приведена схема подключения драйвера трехфазного моста IR213* с использованием функции защиты от перегрузки. Для этой цели используется вход ITR. Напряжение срабатывания защиты — 500 мВ. Для измерения полного тока моста в эмиттерах установлен резистор RSENSE, номинал которого вместе с делителем R2, R3 определяет ток защиты.
Рис. 7. Схема включения IR2130
Драйвер IR2130 обеспечивает управление MOSFET и IGBT транзисторами при напряжении до 600 В, имеет защиту от перегрузки по току и от снижения питающих напряжений. Схема защиты содержит полевой транзистор с открытым стоком для индикации неисправности (FAULT). Он также имеет встроенный усилитель тока нагрузки, что позволяет вырабатывать контрольные сигналы и сигналы обратной связи. Драйвер формирует время задержки (tdt — deadtime) между включением транзисторов верхнего и нижнего плеча для исключения сквозных токов. Это время составляет от 0,2 до 2 мкс для различных модификаций.
Для правильного использования указанной микросхемы и создания на ее основе надежных схем надо учитывать несколько нюансов.
Особенностью драйверов IR213* является отсутствие функции ограничения напряжения на затворе при КЗ. По этой причине постоянная времени цепочки R1C1, предназначенной для задержки включения защиты, не должна превышать 1 мкс. Разработчик должен знать, что отключение моста произойдет через 1 мкс после возникновения КЗ, в результате чего ток (особенно при активной нагрузке) может превысить расчетное значение. Для сброса защиты необходимо отключить питание драйвера или подать на входы нижнего уровня запирающее напряжение (высокого уровня). Отметим также, что среди микросхем данной серии имеется драйвер IR2137, в котором предусмотрена защита по напряжению насыщения верхних транзисторов и формируется необходимое время задержки срабатывания этой защиты. Такая защита очень важна для драйверов, управляющих трехфазными мостовыми схемами, так как при возникновении пробоя на корпус ток КЗ течет, минуя измерительный резистор RSENSE. В этой микросхеме предусмотрено раздельное подключение резисторов затвора для включения, отключения и аварийного выключения, что позволяет реализовать наиболее полно все динамические особенности транзисторов с изолированным затвором.
Ток включения/выключения для IR213* составляет 200/420 мА (120/250 мА для IR2136). Это необходимо учитывать при выборе силовых транзисторов и резисторов затвора для них. В параметрах на транзистор указывается величина заряда затвора (обычно в нК), которая определяет при данном токе время включения/выключения транзистора. Длительность переходных процессов, связанных с переключением, должна быть меньше времени задержки tdt, формируемого драйвером. Применение мощных транзисторов может также привести к ложному открыванию и возникновению сквозного тока из-за эффекта Миллера. Уменьшение резистора затвора или использование резисторов затвора, раздельных для процессов включения и выключения, не всегда решает проблему вследствие недостаточного тока выключения самого драйвера. В этом случае необходимо использование буферных усилителей.
Преимуществом микросхем производства International Rectifier является то, что эти устройства способны выдерживать высокие перепады напряжения между входной и выходной частью. Для драйверов серии IR21** это напряжение составляет 500–600 В, что позволяет управлять транзисторами в полумостовых и мостовых схемах при питании от выпрямленного промышленного напряжения 220 В без гальванической развязки. Для управления транзисторами в схемах, рассчитанных на питание от выпрямленного напряжения 380 В, International Rectifier выпускает драйверы серии IR22**. Эти микросхемы работают при напряжении выходной части до 1200 В. Все драйверы International Rectifier выдерживают фронты наведенного напряжения до 50 В/нс. Этот параметр называется dv/dt immune. Он свидетельствует о высокой устойчивости к режиму защелкивания, который представляет исключительную опасность для импульсных высоковольтных схем.
Драйвер нижнего плеча
Для управления транзисторами нижнего плеча хорошую альтернативу представляют микросхемы, выпускаемые фирмой Motorola. Структурная схема одной из них — МС33153 приведена на рис. 8.
Рис. 8. Структурная схема MC33153
Особенностью данного драйвера является возможность использования двух способов защиты (по току и напряжению насыщения) и разделение режима перегрузки и режима короткого замыкания. Предусмотрена также возможность подачи отрицательного напряжения управления, что может быть очень полезно для управления мощными модулями с большими значениями заряда затвора. Отключение при падении напряжения управления — UVLO осуществляется на уровне 11 В.
Вывод 1 (Current Sense Input) предназначен для подключения токового измерительного резистора. В микросхеме этот вывод является входом двух компараторов — с напряжением срабатывания 65 и 130 мВ. Таким образом, в драйвере анализируется состояние перегрузки и короткого замыкания. При перегрузке срабатывает первый компаратор (Overcurrent Comparator) и отключает сигнал управления затвором. Сброс защиты производится при подаче запирающего сигнала (высокого уровня, так как вход Input — инвертирующий). При этом сигнал неисправности на выход (Fault Output) не подается. Если ток превышает заданный в два раза, это расценивается как КЗ. При этом опрокидывается второй компаратор (Short Circuit Comparator), и на контрольном выходе появляется сигнал высокого уровня. По этому сигналу контроллер, управляющий работой схемы, должен произвести отключение всей схемы. Время повторного включения должно определяться, как было сказано выше, тепловой постоянной времени силовых транзисторов.
Вывод 8 (Desaturation Input) предназначен для реализации защиты по напряжению насыщения. Напряжение срабатывания по этому входу — 6,5 В. Этот же вход предназначен для подключения конденсатора Cblank, формирующего время задержки срабатывания защиты. Такая задержка необходима, поскольку после подачи отпирающего напряжения на затвор на транзисторе некоторое время, пока идет восстановление оппозитного диода, поддерживается высокое напряжение.
Рис. 9. Защита по напряжению насыщения
На рис. 9 и 10 показаны схемы подключения МС33153 с использованием защиты по напряжению насыщения и току коллектора. В обеих схемах использованы оптопары для развязки сигнала управления и сигнала ошибки. В схеме на рис. 10 показан транзистор IGBT со специальным токовым выходом. Как правило, IGBT не имеют такого вывода, и измерительный резистор устанавливается непосредственно в силовую цепь эмиттера. При этом необходимо учесть, что этот резистор должен иметь минимальную паразитную индуктивность, а номинал его должен быть выбран с учетом необходимого тока срабатывания защиты. Иногда в качестве датчика тока целесообразно применить отрезок высокоомного провода, например манганинового или нихромового. Обратите внимание, что порог срабатывания схем защиты микросхем Motorola ниже, чем International Rectifier, что позволяет использовать меньшие измерительные резисторы и снизить потери мощности на них. Однако в этом случае предъявляются повышенные требования к помехозащищенности.
Рис. 10. Защита по току
Драйвер с гальванической развязкой
Гальваническая развязка бывает необходима в схемах, где мощный силовой каскад питается от сетевого напряжения, а сигналы управления вырабатываются контроллером, связанным по шинам с различными периферийными устройствами. Изоляция силовой части и схемы управления в таких случаях снижает коммутационные помехи и позволяет в экстремальных случаях защитить низковольтные схемы.
Рис. 11. Структурная схема HCPL316
На наш взгляд, одной из наиболее интересных микросхем для данного применения является HCPL316 производства фирмы Hewlett-Packard. Его структура приведена на рис. 11, а схема подключения — на рис. 12.
Рис. 12. Схема подключения HCPL316
Сигнал управления и сигнал неисправности имеют оптическую развязку. Напряжение изоляции — до 1500 В. В драйвере предусмотрена защита только по напряжению насыщения (вывод 14 — DESAT). Интересной особенностью является наличие прямого и инверсного входа, что упрощает связь с различными типами контроллеров. Так же как и в случае с МС33153 микросхема может вырабатывать двуполярный выходной сигнал, причем пиковый выходной ток может достигать 3 А. Благодаря этому драйвер способен управлять IGBT транзисторами с током коллектора до 150 А, что является его большим преимуществом по сравнению с аналогичными устройствами.
Вспомогательные схемы
В высоковольтных драйверах фирмы International Rectifier благодаря низкому потреблению питание выходных каскадов может осуществляться с помощью так называемых «бутстрепных» емкостей небольших номиналов. Если такой возможности нет, необходимо использовать «плавающие» источники питания. В качестве таких источников дешевле всего применять многообмоточные трансформаторы с выпрямителем и стабилизатором на каждой обмотке. Естественно, если вы хотите иметь двуполярный выходной сигнал, то и каждый такой источник должен быть двуполярным. Однако более изящным решением является использование изолирующих DC-DC конверторов, например серии DCP01* производства Burr-Brown. Эти микросхемы рассчитаны на мощность до 1Вт и могут формировать двуполярный выходной сигнал из однополярного входного. Напряжение развязки — до 1 кВ. Изоляция осуществляется с помощью трансформаторного барьера на частоте 800 кГц. При использовании нескольких микросхем они могут синхронизироваться по частоте.
В силовых приводах часто бывает необходимо иметь сигнал, пропорциональный выходному току, для формирования обратных связей. Эта задача решается разными способами: с помощью трансформаторов тока, шунтов и дифференциальных усилителей и т. д. Все эти методы имеют свои недостатки. Для наиболее успешного решения задачи формирования токового сигнала и связи его с контроллером фирма International Rectifier разработала микросхемы — токовые сенсоры IR2171 и IR2172, в которых токовый сигнал преобразуется в ШИМ-сигнал. Схема включения IR2171 приведена на рис. 13. Микросхема выдерживает перепад напряжения до 600 В и питается от «бутстрепной» емкости. Несущая частота ШИМ — 35 кГц для IR2171 и 40 кГц для IR2172. Диапазон входных напряжений ±300 мВ. Выходное напряжение снимается с открытого коллектора, что позволяет легко подключить оптическую развязку.
Описать все микросхемы, выпускаемые сейчас в мире для использования в силовых приводах, вряд ли возможно. Однако даже приведенные сведения должны помочь разработчику сориентироваться в океане современной элементной базы. Главный вывод из всего сказанного можно сделать следующий: не пытайтесь сделать что-нибудь на дискретных элементах, пока не будете уверены в том, что никто не выпускает интегральную микросхему, решающую вашу задачу.
Литература
- Use Gate Charge to Design the Gate Drive Circuit for Power MOSFETs and IGBTs. AN-944.
- Application Characterization of IGBTs. INT990.
- IGBT Characteristics. AN-983.
- Short Circuit Protection. AN-984.
- HV Floating MOS-Gate Driver Ics. AN-978.
- Motorola MC33153 Technical Data.
- Hewlett Packard HCPL316 Technical Data.
- Burr Brown DCP011515 Technical Data.
- Иванов В. В., Колпаков А. Применение IGBT. Электронные компоненты, 1996, № 1.
kai@megachip.ru
|